
 

Technical Problem Analysis: MRT 
Instability in MTF Concepts 
 

This analysis assesses the research conducted by Los Alamos National Laboratory (LANL) 
and the Air Force Research Laboratory (AFRL) to understand and mitigate the 
Magneto-Rayleigh-Taylor (MRT) instability within their joint Magnetized Target Fusion (MTF) 
program, culminating in the Field-Reversed Configuration Heating Experiment (FRCHX). The 
MRT instability, a magnetohydrodynamic instability that occurs when a magnetic field is used 
to accelerate a conducting fluid or plasma, represents a critical potential failure mode for any 
concept relying on the implosion of a solid metal liner to compress a plasma target.1 

The central finding of this report is that circa 2013, the joint LANL/AFRL program was 
fundamentally constrained by a critical precursor challenge: achieving a sufficiently long-lived 
and stable Field-Reversed Configuration (FRC) plasma target. This prerequisite issue 
consumed the vast majority of the program's documented scientific and engineering efforts. 
As a result, dedicated research into the subsequent and equally critical problem of MRT 
instability mitigation during liner compression was not a programmatic priority and remained 
at a very low level of maturity. 

 

1. Analysis of LANL Research: Capability vs. 
Application 
 

Analysis of LANL's documented activities reveals a significant dichotomy between the 
laboratory's world-class institutional capabilities in instability modeling and diagnostics and 
the actual research focus of the specific groups executing the FRCHX experiment. While 
LANL possessed the necessary tools and expertise to address the MRT problem, these 
resources were not directed toward the MTF program, which was preoccupied with a more 
immediate technical obstacle. 

 

Simulation & Modeling 
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A review of LANL's broader research portfolio establishes the laboratory as a global leader in 
the simulation of hydrodynamic and magnetohydrodynamic instabilities. Its theoretical 
divisions (T-Division) and applied physics groups have a long history of developing and 
utilizing advanced, multi-physics computational codes such as FLASH and HYDRA to model 
complex high-energy-density physics (HEDP) phenomena.3 This expertise is routinely applied 
to understanding instability growth in major national security programs, including Inertial 
Confinement Fusion (ICF) at the National Ignition Facility (NIF) and Magnetized Liner Inertial 
Fusion (MagLIF) at Sandia National Laboratories.1 These efforts demonstrate a deep 
institutional capability to simulate MRT evolution in both planar and cylindrical geometries 
under relevant conditions. 

In stark contrast, the documented modeling efforts of the LANL P-24 Plasma Physics group, 
the lead entity for the FRCHX collaboration, were centered almost exclusively on the physics 
of the FRC plasma target. Their simulations, often employing codes like MACH2, focused on 
the initial stages of the MTF sequence: FRC formation via theta-pinch, translation out of the 
formation region, and capture within the liner prior to implosion.9 

The key finding from this analysis is the conspicuous absence of published simulation work 
from either the P-24 group or LANL's theoretical divisions that specifically models MRT 
growth for the unique FRCHX configuration: a solid, relatively thick aluminum liner imploding 
onto a high-beta FRC plasma target. This absence is not an intelligence gap but rather a 
positive indicator of the program's scientific priorities. A logical research program would not 
dedicate significant computational resources to modeling a secondary failure mode (liner 
instability during compression) when the primary, antecedent failure mode (the plasma target 
dissipating before compression could be effective) had not yet been solved. The FRCHX 
program was demonstrably struggling to achieve the required FRC plasma lifetime of ~20 µs 
needed to match the liner implosion timescale.9 The program's focus was therefore 
necessarily fixed on this more immediate and fundamental FRC lifetime problem, revealing a 
clear and logical prioritization of R&D challenges. 

 

Diagnostic Development 
 

LANL's institutional capability in diagnostic development mirrors its strength in simulation. The 
laboratory is a world leader in conceiving, building, and fielding advanced diagnostics for 
HEDLP experiments at premier facilities like Omega and NIF.5 This includes a portfolio of 
sophisticated, high-resolution x-ray radiography techniques, such as the Crystal Backlighter 
Imager (CBI), which are specifically designed to image the fine-scale features of 
hydrodynamic and magnetohydrodynamic instabilities as they evolve.1 This establishes that 
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LANL possessed the core competency to create and deploy the tools necessary to 
experimentally observe MRT growth on an imploding liner. 

However, the actual diagnostic suite planned and employed for the FRCHX experiment was 
overwhelmingly focused on characterizing the FRC plasma target, not the liner's integrity. The 
documented diagnostic set included multi-chord laser interferometers to measure plasma 
density, various forms of spectroscopy to assess temperature and purity, and arrays of 
external magnetic probes to determine the plasma's shape, position, and trapped magnetic 
flux.10 While diagnostics such as soft x-ray imaging and neutron detectors were planned for 
the final implosion shots, their primary purpose was to measure the state of the compressed 
plasma (i.e., temperature and fusion yield), not to provide high-resolution, time-resolved 
imaging of the liner's surface during its inward flight.10 

No specialized diagnostic techniques were developed or fielded on FRCHX with the specific 
mission of detecting the onset or quantifying the growth of MRT instabilities on the solid 
aluminum liner. The choice of diagnostics for a complex experiment is a direct reflection of its 
scientific priorities. The FRCHX diagnostic suite was a perfect mirror of the FRC lifetime 
problem; the team needed to measure plasma density, temperature, and magnetic flux to 
understand why the FRC was decaying too quickly. High-resolution liner radiography was not 
pursued because the liner's stability was a secondary concern. If the plasma target was not 
viable, the liner's performance during compression was a moot point. This confirms, from an 
experimental hardware perspective, that MRT was not the primary research question being 
addressed by the program circa 2013. 

 

2. Analysis of AFRL Collaboration: The "Hammer" and 
its Limitations 
 

The Air Force Research Laboratory's role in the collaboration was to provide the 
"hammer"—the powerful liner implosion capability—to compress the FRC plasma target 
developed by LANL. This capability was the application of a mature, pre-existing defense 
technology. It was not a new research and development effort focused on creating novel MRT 
mitigation techniques specifically for the fusion energy mission. 

 

Experimental Mitigation 
 

The FRCHX experiment consistently utilized solid aluminum liners, typically of the 6061-T6 
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alloy, with dimensions of approximately 1 mm in thickness, 10 cm in diameter, and 30 cm in 
length.9 The primary experimental objective documented in the final years of the program was 
the extension of the FRC plasma lifetime to match the ~20 µs timescale of the liner implosion.9 
The most current research from this period is captured in a July 2013 abstract by G.A. Wurden 
et al., which details a significant breakthrough. By physically lengthening the magnetic trap 
within the liner, the team successfully increased the FRC's trapped flux lifetime from a range 
of 8-11 µs to a much more promising 14-16 µs, bringing it close to the programmatic 
requirement.9 This work on the plasma target itself represented the cutting edge of the 
program's publicly documented research. 

There is no evidence in the available research of any systematic experimental campaigns 
conducted on FRCHX to test or develop MRT mitigation strategies. The research record shows 
a complete absence of studies on: 

●​ Alternative Liner Materials: Unlike the parallel MagLIF program at Sandia, which 
investigated the use of beryllium liners, there is no indication that FRCHX explored 
materials other than aluminum.9 

●​ Magnetic Field Shaping: There is no mention of experiments employing advanced 
stabilization techniques such as magnetic shear, dynamic screw pinches, or tailored 
current pulse shapes from the Shiva Star driver.19 

●​ Other Mitigation Techniques: There is no evidence of the use of dielectric coatings or 
other methods that were being actively investigated in the broader HEDP community to 
suppress instability seeds.25 

The experimental goal for the liner was to achieve a symmetric, uniform implosion using the 
existing, well-characterized hardware configuration developed for prior defense programs.16 
AFRL's contribution was its mature liner implosion capability, a technology honed over many 
years for other national security applications.9 FRCHX was an 

application of this capability to a new type of plasma target. It was not a program designed to 
advance the state of the art in liner stability physics. The broader research landscape clearly 
shows that MRT mitigation was an active, complex, and distinct field of study at the time.21 
The FRCHX program did not engage in this parallel research track because its mission was 
different: to determine if a pre-existing "hammer" (AFRL's liner implosion) could successfully 
compress a novel "nail" (LANL's FRC plasma). The failure to solve the "nail" problem—i.e., 
achieving a robust, long-lived FRC—meant the program never graduated to the subsequent 
stage of optimizing the "hammer." 

 

Key Personnel 
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The AFRL contribution to the MTF collaboration was led by a core team of experts from the 
Directed Energy Directorate at Kirtland Air Force Base. Analysis of consistent co-authorship 
across numerous FRCHX-related publications and conference proceedings identifies the 
principal AFRL investigators. 

 

Key AFRL Personnel Primary Affiliation Assessed Role & 
Expertise in MTF 
Collaboration 

Key Supporting 
Evidence 
(Publication Topics) 

Dr. John H. 
Degnan 

AFRL Directed 
Energy Directorate, 
Pulsed Power 
Branch 

Lead, Liner 
Implosion 
Physics. Senior 
expert on the 
design and 
execution of 
magnetically-driven 
solid liner 
implosions using 
the Shiva Star 
facility. 

Solid/spherical liner 
implosions 
(pre-FRCHX); 
Integrated FRCHX 
compression 
results 18 

Dr. Edward L. 
Ruden 

AFRL Directed 
Energy Directorate 

Principal 
Investigator, 
HEDP Diagnostics 
& Analysis. 
Expertise in plasma 
diagnostics and 
continuum 
dynamics for 
integrated 
experiments. 

Integrated FRCHX 
experiments; HEDP 
diagnostics; FRC 
lifetime studies 2 

Dr. Chris 
Grabowski 

AFRL Directed 
Energy Directorate 

Principal 
Investigator, 
Pulsed Power & 
FRC Integration. 
Expertise in pulsed 
power engineering 
(crowbar switches) 
and FRC 

Integrated FRCHX 
experiments; 
Pulsed power 
hardware; FRC 
lifetime studies 14 
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formation/lifetime 
studies. 

Dr. Matthew T. 
Domonkos 

AFRL Directed 
Energy Directorate 

Core Researcher, 
Integrated 
Experiments. Key 
member of the 
experimental team 
for integrated 
liner-on-plasma 
tests. 

Integrated FRCHX 
experiments; FRC 
lifetime studies 9 

This team, particularly Dr. Degnan, brought a deep, pre-existing knowledge base in solid liner 
implosion physics to the collaboration.18 This expertise was foundational to the program, 
providing the high-power compression capability that LANL lacked. However, the publication 
record of this team during the FRCHX era is dominated by papers on integrated experiments 
and the persistent FRC lifetime issue, with no specific publications detailing dedicated 
research into MRT mitigation for the MTF application.29 

 

3. Final Assessment 
 

The synthesis of the preceding analysis provides a definitive, confidence-scored conclusion 
regarding the maturity of MRT mitigation strategies within the LANL-AFRL MTF program as of 
2013. 

The evidence converges on a single, coherent picture: the LANL/AFRL collaboration's primary 
programmatic focus was solving the FRC target lifetime problem, which was a necessary 
precondition for any meaningful compression heating experiment. LANL's world-class MRT 
simulation and diagnostic capabilities were not applied to the FRCHX program because 
resources were directed at the more immediate FRC stability issue. Similarly, AFRL's role was 
to provide a mature liner implosion capability, not to conduct new R&D into MRT mitigation 
techniques within the scope of the FRCHX project. 

Maturity Assessment (Circa 2013): 
The maturity of MRT mitigation strategies specifically developed for and tested on the FRCHX 
platform is assessed as Technology Readiness Level (TRL) 1-2 (Basic principles 
observed/Technology concept formulated). This low TRL reflects the fact that while the MRT 
instability was recognized as a critical future challenge for the MTF concept, it had not yet 
become the subject of dedicated, systematic experimental or computational investigation 
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within the program itself. 
Confidence Score: HIGH. This assessment is based on strong, convergent evidence from the 
program's own publications, which overwhelmingly emphasize the FRC lifetime problem, and 
the conspicuous absence of publications on FRCHX-specific MRT mitigation. This absence is 
particularly telling given the vibrant research landscape on the topic in adjacent HEDP 
programs like MagLIF, indicating a deliberate and logical prioritization of effort within the 
FRCHX program. 

Determination of Prototype Readiness: 
The research circa 2013 did not indicate that MRT mitigation strategies were sufficiently 
advanced to enable a successful, stable implosion in an operational MTF prototype. The 
program had not yet reliably demonstrated a stable, long-lived plasma target that could 
survive until the point of maximum liner compression. Without a viable target, the question of 
the liner's stability during the subsequent compression phase, while critically important, 
remained a future research challenge. The MTF concept, as pursued in FRCHX, was still in the 
basic science phase of validating its core components and had not yet earned the technical 
right to address the complex, integrated physics of liner stability in a fusion context. 
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